25 research outputs found

    Indeksi za vrednotenje zmogljivosti prenosa sile in omejitev pri paralelnih mehanizmih

    Full text link
    The force transmission and constraint ability significantly influence the performance of parallel mechanisms (PMs), such as force dexterity, overall rigidity and accuracy. The transmission wrench screw (TWS) transmits the force between the actuator and end-effector, and the constraint wrench screw (CWS) resists structural deformations. They significantly influence the manipulability to transmit force and the consistency to resist deformations. In this study, two new indices are proposed to evaluate their manipulability and consistency. The indices are notable for their unit homogeneity, frame independence, and measurement facility without interference. By taking three PMs with different mobility properties as examples, the effectiveness of the two indices for evaluating the manipulability to transmit force and the consistency to resist deformations is verified. Based on the indices, the configuration of a 3-CRU (C a cylindrical joint, R a revolute joint, and U a universal joint) PM with optimal force transmission and constraint ability is constructed

    Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor

    No full text
    By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments

    小动物PET 在神经科学研究中的应用

    No full text

    enhancedelectrocatalyticperformanceofultrathinptnialloynanowiresforoxygenreductionreaction

    No full text
    In this paper, ultrathin Pt nanowires (Pt NWs) and PtNi alloy nanowires (PtNi NWs) supported on carbon were synthesized as electrocatalysts for oxygen reduction reaction (ORR). Pt and PtNi NWs catalysts composed of interconnected nanoparticles were prepared by using a soft template method with CTAB as the surface active agent. The physical characterization and electrocatalytic perfor- mance of Pt NWs and PtNi NWs catalysts for ORR were investigated and the results were compared with the commercial Pt/C catalyst. The atomic ratio of Pt and Ni in PtNi alloy was approximately 3 to 1. The results show that after alloying with Ni, the binding energy of Pt shifts to higher values, indicating the change of its electronic structure, and that Pt3Ni NWs catalyst has a significantly higher electrocatalytic activity and good stability for ORR as compared to Pt NWs and even Pt/C catalyst. The enhanced electrocatalytic activity of Pt3Ni NWs catalyst is mainly resulted from the downshifted-band center of Pt caused by the interaction between Pt and Ni in the alloy, which facilitates the desorption of oxygen containing species (Oads or OHads) and the release of active sites
    corecore